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Abstract   

 In this paper, we introduce the class of P-LOTOS expressions where the data types are 
restricted to the integer and boolean types and the operators of the integers are restricted to 
addition, subtraction and comparison.  For this class, we give an algorithm for deriving a set of 
test cases (a test suite). The algorithm is carried out by using a decision procedure for integer 
linear programming problems. We have implemented a tool for the test selection based on our 
technique. The derivation of a test suite for a simplified Session protocol is described as an 
example.   
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1. Introduction 

 Precise specifications are essential for the design and implementation of distributed systems 
and communication networks. They are important during the validation of the system design, 
the implementation development and conformance testing phase [Boch 90].  The use of formal 
description techniques (FDT's) allows the automation of certain aspects of these activities.  For 
the description of OSI communication protocols and services, the standardized languages 
Estelle [ISO 89b], LOTOS [ISO 89a] and SDL [CCITT 88] are proposed.  In this paper, we are 
concerned with the test case selection problem for LOTOS expressions with interaction 
parameters. The selection of appropriate test cases is an important issue for conformance 
testing of communication protocols, as well as for software engineering.  In the software 
engineering context, it is well known that the problem of deciding whether a given branch of a 
program is executable, and if yes, which test inputs would lead to the execution of this branch, 
is undecidable. Therefore it is understandable that most work on test suite development for 
communication protocols assumes that the protocol is specified in a state transition model 
without interaction parameters.  Many methods exist for test selection for finite state machine 
(FSM) specifications (for on overview, see for instance [Fuji 91]).  Certain authors have 
considered extended finite state machine (EFSM) specifications which include interaction 
parameters and additional state variables. Usually, the data flow relations between input/output 
parameters and state variables are considered in the test selection process [Sari 87], however, it 
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is generally assumed that the transitions do not contain enabling conditions depending on the 
additional state variables, or such dependencies are treated in an informal manner.  The 
situation is similar for the work on test selection based on LOTOS specifications. Several 
authors limit their attention to basic LOTOS, ignoring interaction parameters [Brin 88, Weze 
89, Lang 89].  The approach of [TrSa 89] considers the data flow relations automatically, while 
[Tret 89] leaves certain aspects to be carried out interactively, as certain problems can not be 
solved automatically in the general case. 
 In this paper, we show that the problem of test suite development with interaction 
parameters, can be completely automated if the power of the underlying specification language 
is sufficiently restricted.  We use in this paper the notation of LOTOS and consider a subset of 
the language where the data parameters are restricted to values belonging to the integer and 
boolean types, and the operations of the integers are restricted to the operations addition, 
subtraction and comparison.  Integers with these restricted operations were first considered by 
Presburger [Pres 29]; therefore we call our LOTOS subset "P-LOTOS". Especially, for the 
class where all variables are bounded by existential quantifiers, the problem can be solved 
through integer linear programming [HoUl 79].  This is the reason that many questions related 
to specifications written in P-LOTOS are also decidable, as further discussed in this paper. 
 The paper is structured as follows. The definition of P-LOTOS expressions and the 
corresponding extended labeled transition systems (ELTS's) is given in Section 2.  In Section 
3, we introduce the test case selection problem in more details by discussing some simple 
examples in the context of LOTOS.  In Sections 4 and 5, we provide an algorithm to solve this 
problem.    As an example, the test suite derivation for a simplified Session protocol is 
described in Section 6.   In Section 7, a tool for the test selection based on our techniques is 
explained. 

2. P-LOTOS expressions and corresponding extended LTSs 

2.1 P-LOTOS expressions 
 In this section, we define the class of LOTOS expressions considered in this paper.  In 
general, we assume that a LOTOS expression "t" consists of a tuple "<P0,P1(..),...,Pk(..)>" of 
one main process P0 and some sub-processes P1(..),..,Pk(..). We use a slightly simplified syntax 
and do not write the gate declarations in the process definitions. We assume that the gates are 
globally defined. 
[Example 2.1] 
 t1   = <R,D(w)> 
 R  := f?x:int[-8≤x≤8] ; g!x ; h?y:int[-8≤y≤8] ;  
     ( ( [y≥0 and x=y] -> k!x ; stop ) [] ( [y≤-1] -> k!y ; D(x-1) ) ) 
 D(w:int)  := a?z:int ; ( b!z ; stop [] ( [w≥7] -> c!z ; D(w-1) ) )              [] 
 In Example 2.1, the process R is the main process of t1 and the process D(w) is a sub-
process. Here, "f?x" and "h?y" are input events, and "g!x" is an output event. Some LOTOS 
operators are used for specifying the temporal ordering of the execution of events.  Let B, B1 
and B2 denote behavior expressions. A behavior expression "a ; B" represents that "B" is 
executable after the event "a" is executed. A behavior expression "B1 [] B2" represents that 
either "B1" or "B2" is executed.  A behavior expression "B1 |[g1,..,gn]| B2" represents that 
both "B1" and "B2" are executable in parallel.  The events in "B1" and "B2" communicating 
via gates in {g1,..,gn} must be executed as rendezvous interactions. A behavior expression "B1 
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>> B2" represents that "B2" is executable after the execution of "B1" is finished successfully. 
The expressions appearing in input/output events are called "input/output parameters". The 
predicates, such as [-8≤x≤8] and [y≥0 and x=y], are called "guards". The behavior expression 
"[y≥0 and x=y] -> k!x ; stop" represents that the event "k!x" is executable if and only if the 
predicate [y≥0 and x=y] holds.  The variable "w"in D(w:int) is called a formal process 
parameter of the process D, and the expression "x-1" in D(x-1) is called an actual process 
parameter of the process D. Although the main process is not required to  have its formal 
process parameters, all sub-processes may have their formal process parameters.  
[Definition 2.1] 
 A term which consists of integers, variables of integer type, and operators "+" and  "-" is 
called a P-term ("P" stands for Presburger who first studied this limited arithmetic).  A P-
sentence is defined inductively as follows. 
 (A) If t1 and t2 are P-terms, "t1=t2", "t1<t2", "t1≤t2", "t1≥t2" and "t1>t2" are P-sentences. 

  k ! x [y0 and x=y]

D(x-1)

 c ! z [x-17]b ! z [true]
D(x-2)

D(x-3)

a ? z1:int [true]

b ! z1 [true]  c ! z1 [x-27]

m7

m9

m10

m8
stop

m5
stop

m11
stop

h ? y : int [-8ŠyŠ8]

m12

label(m2) = g!x ; h?y:int[-8ŠyŠ8] ;  ... 
label  (m4) = ([y0 and x=y]->k!x ; stop)  
                       [] ([yŠ-1]->k!y ; D(x-1)) 
label(m6) = D(x-1) 
label(m7)  = (b!z ;  stop)   

                        [] ([x-17] -> c!z ; D(x-2)) 
label(m10) = (b!z1 ;  stop)  

                        []  ([x-27] -> c!z1 ; D(x-3)) 

m4
k ! y [yŠ-1]

a ? z:int [true]
m6

m1

m2

m3

f ? x : int [-8ŠxŠ8]

g ! x

R

 
Fig.1 An Extended Labeled Transition System ELTS(t1) for LOTOS Expression t1 

 
 
 (B) If  and  are P-sentences, "() and ()", "() or ()", "not ()", "() � ()" are P-

sentence.                [] 
 For example,  "x+y-3" and "(x≥y-z) or (z=w)" are a P-term and a P-sentence, respectively.  
But, "x2 +2x-3=0" is not a P-sentence because multiplication is used. 
[Definition 2.2] 
 A LOTOS expression "t=<P0,P1(..),...,Pk(..)>" is called a "P-LOTOS expression" if it 
satisfies the following restrictions. 
 (1) All guards in the LOTOS expression are described as P-sentences. 
 (2) The data types of all formal process parameters of the sub-processes P1,...,Pk-1 and Pk 

are integers, and all actual process parameters in the LOTOS expression are described 
as P-terms.  

 (3) All input/output parameters of the events are described as P-terms.         []  
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 The LOTOS expression t1 = <R,D(w)> in Example 2.1 is a P-LOTOS expression. Although 
only integer and boolean types are treated in our P-LOTOS expressions, we can also treat 
enumeration types, such as  for instance "PDUtype = (CR, CC, DR, DC, DT)".  Such 
enumeration types are very common in most specifications. The values of an enumeration type 
may be represented as integer values, and the operators included in P-LOTOS are sufficient to 
handle such values. Therefore, P-LOTOS expressions have considerable power for the purpose 
of system description. 

2.2 Extended labeled transition system 
 In this section, we will define a tree called an "extended labeled transition system" which 
represents the possible sequences of events that may be executed for a given LOTOS 
expression "t".  First, we will explain the outline of our extended labeled transition system 
ELTS(t) for a LOTOS expression "t".  Let LTS(t) denote the general labeled transition system 
[ISO 89a] for the LOTOS expression "t=<P0,P1(..),..,Pk(..)>".  If "t" is a Basic LOTOS 
expression (i.e. without input/output parameters), then the ELTS(t) is the same as the tree 
representation of the LTS(t).  That is, each node in the ELTS(t) has a label which is a behavior 
expression.  The label of the root node in the ELTS(t) is the main process "P0".  Let "n" and 
"label(n)" denote a node in the ELTS(t) and its label, respectively.  Suppose that label(n) is 
"B".  If an event "a" is executable for the behavior expression "B" and "Ba" denotes the 
behavior expression after "a" is executed for "B", then there is a node "na" whose label is "Ba" 
which is a child node of the node "n" in ELTS(t).   
 If "t" is not in Basic LOTOS, that is, if "t" contains data values, then there exists a little 
difference between the ELTS(t) and LTS(t).  Suppose that the label of a node "n" in LTS(t) is 
B and that B is "f!x[0≤x]; B'(x)" where "x" is a variable of the type integer.  Since "f!0", "f!1" , 
"f!2",... are executable at the node n, the node n has infinitely many children whose labels are 
B'(0), B'(1), B'(2),..., respectively.  But, in the corresponding ELTS(t), the number of children 
for the node n is only one.  Let n' denote this child node.  We define that label(n') is B'(x), and 
that the relation B-<f!x, [0≤x]>->B'(x) holds between the two behavior expressions B and 
B'(x).  That is, the relation B-<f!x, [0≤x]>->B'(x) represents that "f!k" is executable for B if the 
integer "k" is greater than or equal to 0, and that B'(k) is the behavior expression after "f!k" is 
executed.  With the edge nn', we associate two labels Event(nn') and Cond(nn'). The 
labels Event(nn') and Cond(nn') represent the event "f!x" and the condition "[0≤x]", 
respectively. For instance, Fig. 1 is the ELTS(t1) for the LOTOS expression t1 = <R,D(w)> in 
Example 2.1.   
 
 
 Table 1    Axioms and Inference Rules to Define the Relation  B-<a,c>->B' 
                 
Axioms 

• h ? x1:int ...! E1 ... ; B  -<h ? x1:int ...! E1..,true>-> B  
• h ? x1:int ...! E1 ... [ Q ] ; B -<h ? x1:int ...! E1..,Q>->  B  
• i  ; B     -<i,true>->   B  
• i [ Q ] ; B    -<i,Q>->     B  
• exit    -<exit,true>->     stop  

 
Inference Rules 

     B  -<a,c>->  B' 
• ______________________ 
    ( [Q] -> B) -<a,c and Q>-> B' 
     B  -<a,c>->  B'  
• ______________________________________ 
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     (B [] B") -<a,c>-> B'  (B" [] B) -<a,c>-> B'  
     B  -<a,c>->  B' &  a�exit 
• ___________________________________________________ 
     (B ||| B") -<a,c>-> (B' ||| B")  (B" ||| B) -<a,c>-> (B" ||| B')  
     B1  -<exit,c1>->  B1' &   B2  -<exit,c2>->  B2'  
• _________________________________________ 
     (B1 ||| B2) -<exit,c1 and c2>-> (B1' ||| B2')  
     B  -<a,c>->  B'   &  a�G{exit} 
• ______________________________________________________ 
    (B |[G]| B") -<a,c>-> (B' |[G]| B")   (B" |[G]| B) -<a,c>-> (B" |[G]| B')  
     B1  -<a,c1>->  B1'  &  a=g$e1...$ek  &  B2  -<a',c2>->  B2'  &  a'=g$e1'...$ek' 

     &  g�G{exit}   (Here,"$" denotes either the input symbol "?" or the output symbol "!".) 
• ___________________________________________________  ____      
    (B1 |[G]| B2) -<a,c1 and c2 and (e1=e1' and ... and ek=ek' )>-> (B1' |[G]| B2')  

     B  -<a,c>->  B' &  a�exit   B  -<exit,c>->  B'  
• ________________________               • ________________________ 
     (B >> B") -<a,c>-> B'>> B"   (B >> B") -<i,c>-> B"  
     B  -<a,c>->  B' &  a�exit   B  -<exit,c>->  B' 
• _______________________               • _______________________ 
   (B [> B") -<a,c>-> (B' [> B")   (B [> B") -<exit,c>-> B'  
     B"  -<a,c>->  B' 
• __________________ 
     (B [> B") -<a,c>-> B'  
     P(x) is a process & P(x):=B(x) & B(x)-<a,c>->B'(x) & ""is an expression & B"(x) is a behavior expression  
     which is obtained by replacing all variables except "x" in B'(x) by new variables 
• ___________________________________________________________________________________ 

      P() -<a,c>-> B"() 
    *  For simplicity, the inference rules for "let", "hiding", "par", "generalized choice" and "accept" operators are omitted. 
  
  

 Next, we will give the formal definition of our extended labeled transition systems.  First, 
for two behavior expressions B and B', we define the relation B-<a,c>->B' by using the axioms 
and inference rules of Table 1. The extended labeled transition system is then defined by using 
this relation as follows. 
[Definition 2.3] 
 The extended labeled transition system ELTS(t) for a given LOTOS expression 
"t=<P0,P1(..),.., Pk(..)>" is a tree (in general, infinite tree) satisfying the following conditions. 
 (1) Each node n in the ELTS(t) has a label "label(n)" which is a behavior expression.  The 

label of the root node is the main process "P0". 
 (2) Let n denote a node in the ELTS(t) and suppose that label(n) is B.  The node n has a 

child node n' whose label is B' if and only if there exists a behavior expression B' 
satisfying the relation B-<a,c>->B'. 

 (3) Let n and n' denote a node and its child node in the ELTS(t), and suppose that 
label(n)=B, label(n')=B' and the relation B-<a,c>->B' hold.  The edge  nn' has two 
labels Event(nn') and Cond(nn') where Event(nn') is "a" and Cond(nn') is "c".   
[] 

 For example, in Fig. 1, label(m2) is "g!x ; h?y:int[-8≤y≤8] ; ...)". At the nodes m6 and m9, 
the same process "D" is invoked. The variables "z" of two events "a?z" in the processes D(x-1) 
and D(x-2) must be treated as different variables.  In order to distinguish the two variables "z", 
the variable "z" in the second process D(x-2) is replaced by a new variable "z1" at the node m9.  
Then, Event(m9m10) is "a?z1". 

3. Problems related to specification analysis and test selection 

 Since a LOTOS expression describes non-determinism and parallelism, several event 
sequences are executable in general.  The ELTS(t) represents the set of possible event 
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sequences as a tree structure.  In order to show an implementation conforms a given 
specification, we need to check whether the implementation executes correctly the event 
sequence corresponding to each path in a given ELTS(t).  Such event sequence is called a test 
case.  In this section, first we define test cases and then we explain the four questions described 
in Section 1.   
 Let us consider the LOTOS expression t1=<R,D(w)> in Example 2.1, and let TR denote the 
sequence of the output events "f!8 ; g!8 ; h!8 ; k!8".  If R || (TR ; stop) is executed, then the 
events on the path from the root node m1 to the node m6 in the ELTS(t1) in Fig. 1 are executed 
sequentially as follows. 
  R || (TR ; stop) -f!8-> ( g!8 ; h?y:int[-8≤y≤8] ; ...)  || (g!8 ; h!8 ; k!8 ; stop) 
  -g!8-> ( h?y:int[-8≤y≤8] ; ...) || (h!8 ; k!8 ; stop) 
  -h!8-> (([8≥0 and 8=8]->k!8 ; stop) [] ([8≤-1]->k!8 ; D(8-1))) || (k!8 ; stop) 
  -k!8-> stop || stop 
 This means that TR makes the process R trace the path from the root node m1 to the node 
m5 in Fig. 1.  In this paper, a sequence of output events, such as TR, is called a test case.   
 Next, we define the test cases treated in this paper more precisely.  Let s1 be the root node 
of the ELTS(t) for a given LOTOS expression "t=<P0,P1(..),...,Pk(..)>".  And let s1,s2,s3..sn-

1,sn be a path from the root node s1 to a node sn in the ELTS(t).  For this path s1,s2,s3..sn-1,sn, 
we assume that the following relations hold. 
 label(s1) -<a1,c1>->label(s2) -<a2,c2>->label(s3)....label(sn-1) -<an-1,cn-1>->label(sn)  
Let [s1,sn](x1,...,xk) denote the sequence of the output events which is obtained by replacing 
all input symbols "?" in the sequence "a1 ; ... ; an-1" by the output symbols "!" and deleting all 
internal events from the sequence.  Here, x1,...,xk are variables appearing in the sequence "a1 ; 
... ; an-1".  And let [s1,sn](x1/n1,...,xk/nk) denote the sequence of the output events which is 
obtained by substituting the integer values n1,...,nk for the variables x1,...,xk, respectively.  Let 
sn(x1,...,xk) denote the conjunction of the conditions c1,...,cn-1. In order to execute the 
sequence [s1,sn](x1/n1,...,xk/nk) for the behavior expression "P0 || ([s1,sn](x1/n1,...,xk/nk); 
stop)" and trace the path from the root node s1 to the node sn in the ELTS(t), the value of 
sn(n1,...,nk) must be true.  In this paper, the predicate sn(x1,...,xk) is called a "reachability 
condition from the root node s1 to the node sn in the ELTS(t)".   
[Definition 3.1 (Test case)] 
 If the value of the reachability condition sn(n1,...,nk) from the root node s1 to a node sn in 
a given ELTS(t) is true, the sequence [s1,sn](x1/n1,...,xk/nk) is called a "test case to trace the 
path from the root node s1 to the node sn in the ELTS(t)".           [] 
 [Problem 1 (The test case derivation problem)] 
 The test case derivation problem is the problem for deriving a test case to trace the path 
from the root node to a given node in an ELTS(t).            
       [] 
 In general, for a given node sn in an ELTS(t), there may not exist a test case to trace the root 
node to the node sn.  For example, consider the following LOTOS expression t2 = <S>. 
[Example 3.1] 
 t2 = <S> 
 S := f ? x : int [-2≤x≤2]  ;  (  ( [x≥5] -> ( p ! x ;  stop )  
     []  ( [x≥0] -> ( i  ;  g ! x ;  stop )   
         []  ( [x≤0] -> g ! x ;  q ! z [z=-x]  ;  stop )  )               [] 
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 The ELTS(t2) is described in Fig. 2.  Since an input for "f?x" is less than or equal to 2, the 
condition [x≥5] is always false.  That is, there is no test case to trace the path from the root 
node to the node s3 in Fig. 2 and we say that the branch s2s3 is non-executable.   
[Problem 2 (The non-executable branch detection problem)] 
 The non-executable branch detection problem is the problem for deciding whether a given 
LOTOS expression "t=<P0,P1(..),..,Pk(..)>" contains non-executable branches in the ELTS(t) 
and detecting all non-executable branches if such branches exist.          [] 
 For a given ELTS(t), let RG(t) denote a tree obtained from the ELTS(t) by deleting all non-
executable branches and their descendants. Here, we call the RG(t) the "reachability graph for 
t".   
[Definition 3.2 (Test suite)] 
 For any leaf node sn in the reachability graph RG(t) for a given LOTOS expression "t", if a 
set of test cases TS(t) contains a test case to trace the path from the root node to the node sn, 
then the set TS(t) is called a "test suite for t".      
       [] 
[Problem 3 (The test suite derivation problem)] 
 The test suite derivation problem is the problem for deriving a test suite for a given LOTOS 
expression "t".                      [] 
 

f ? x : int 
       [-2ŠxŠ2]

s1

s2

s3

s4

s5

q ! z : int  
       [z=-x]

  g ! x : int 
          [true]

s7

             i 
        [x0]

g ! x : int 
       [xŠ0]

p ! x : int 
        [x5]

s6
stop

stop stop  
Fig.2 An Extended Labeled Transition System ELTS(t2) for LOTOS Expression t2 

4. Basic idea for automatic analysis and test case derivation 

 It would be desirable that the test cases described in the above Problems could be derived 
algorithmically for any LOTOS expression, however, this is impossible in general [Tret 89]. 
Therefore, we will give a restriction on LOTOS specifications which will ensure that test cases 
can be derived algorithmically.  In this paper, we will consider P-LOTOS expressions.  In this 
section, we will give the basic idea for automatic test case derivation. 

4.1 Automatic test case derivation 
 In this subsection, we will describe an algorithm to derive a test case which traces a specific 
path in the corresponding ELTS(t) of a LOTOS expression "t=<P0,P1(..),..,Pk(..)>" written as a 
P-LOTOS expression.  We must give concrete values for the input/output parameters in order 
to derive such test cases.  At first, we will explain how to calculate the condition which is 
necessary for taking the path from the root node to a given node.  Next, we will show that it is 
decidable whether the condition is satisfiable or not.  If it is satisfiable, we will give the 
concrete values for the variables through integer linear programming.  If not, we conclude that 
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the path is non-executable.  In Section 3, we defined the reachability condition sn(x1,...,xk) 
from the root node to a given node sn.  For the ELTS(t1) in Fig. 1,  for instance, we have 
  m1   = true 
  m2(x) = (-8≤x≤8) 
  m4(x,y) = (-8≤x≤8) and (-8≤y≤8) 
  m5(x,y) = (-8≤x≤8) and (-8≤y≤8) and (y≥0) and (x=y) 
 Note that the path from the root node s1 in an ELTS(t) to a node sn is non-executable if and 
only if sn(x1,..,xk) is unsatisfiable, i.e., "not( x1,...,xk [sn(x1,...,xk)] )".  The reachability 
condition sn(x1,...,xk) is a P-sentence if "t" is a P-LOTOS expression.   Then, it is decidable 
whether the reachability condition sn(x1,...,xk) is satisfiable, i.e., "x1,...,xk [sn(x1,...,xk)]" 
[HoUl 79]. 
[Theorem 4.1] 
 For any P-LOTOS expression "t", the test case derivation problem (Problem 1) described in 
Section 3 can be solved algorithmically. 
(Proof) For each node sn in the corresponding ELTS(t), we can decide whether sn(x1,...,xk) is 
satisfiable.  If sn(x1,...,xk) is satisfiable, then we can also give a solution <X1,...,Xk> such 
that s(X1,...,Xk) is true.  Therefore, we can derive algorithmically a test case which traces the 
path from the root node in the ELTS(t) to the node sn if such a test case exists.        [] 
 One way to decide this problem is through integer linear programming. By replacing 
"not(E1≥E2)" by "(E1<E2)", we can transform a given reachability condition sn(x1,...,xk) into 
an equivalent P-sentence 'sn(x1,...,xk) which does not contain "not".  Let  
  1sn(x1,...,xk) or 2sn(x1,...,xk) or ... or msn(x1,...,xk)  
be a disjunctive normal form of 'sn(x1,...,xk) where each qsn(x1,...,xk) (1≤q≤m) is a 
conjunction of some linear inequalities.  So, "x1,...,xk [sn(x1,...,xk)]" is true if and only if, 
for some q (1≤q≤m), qsn(x1,...,xk) is satisfiable.  By regarding each linear inequality in 
qsn(x1,...,xk) as a constraint on an integer linear programming problem, we can decide 
whether the integer linear programming problem has integer solutions.  For example, the 
reachability condition m5(x,y) for the node m5 is  
  m5(x,y) = (-8≤x≤8) and (-8≤y≤8) and (y≥0) and (x=y) 
which is a P-sentence. We find that "x,y[m5(x,y)]" holds.  One such solution is <8,8> since 
m5(8,8) is true.  Therefore, "TP :=  f!8 ; g!8 ; h!8 ; k!8" is a test case which traces the path 
from the root node m1 to the node m5 of the ELTS(t1) in Fig. 1. 

4.2 Detecting non-executable branches 
 For any P-LOTOS expression "t", we can check whether each branch in the corresponding 
ELTS(t) is non-executable as follows.  A branch "su" in the ELTS(t) is non-executable if the 
following two predicates hold. 
 (1) x1,...,xk [s(x1,...,xk)] 
 (2) not( x1,...,xk [u(x1,...,xk)]  ) 
 Since the predicates (1) and (2) are P-sentence, it is decidable whether the above two 
predicates hold.  Then, it is decidable whether a given branch in the ELTS(t) is non-executable.  
For example, for the node m10 and m12 in Fig. 1, we can show that 
  (1)  x,y,z,z1 [m10(x,y,z,z1)]   
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   = x,y,z,z1 [ (-8≤x≤8) and (-8≤y≤8) and (y≤-1) and (x-1≥7) ]   
   = true 
  (2)  x,y,z,z1 [m12(x,y,z,z1)]   
   = x,y,z,z1 [ (-8≤x≤8) and (-8≤y≤8) and (y≤-1) and (x-1≥7) and (x-2≥7) ]   
   = false. 
 Therefore, we conclude that m10 is reachable, but the branch "m10m12" is non-executable.  
It means that it cannot invoke sub-process D more than two times.   
[Definition 4.1] 
 We say that a LOTOS expression "t" is finite if and only if it can execute only a finite 
number of events.  Otherwise, we say that "t" is infinite.             
       [] 
 Let RG(t) be the reachability graph for "t".  That is, RG(t) is a tree obtained from the 
ELTS(t) by deleting all non-executable branches and their descendants. In general, the ELTS(t) 
may be infinite even if "t" is finite.  But, by definition, RG(t) is finite if and only if "t" is finite.  
For instance, although the ELTS(t1) in Fig. 1 is infinite, the corresponding reachability graph 
RG(t1) is finite since the branch "m10m12" is non-executable.   
[Theorem 4.2] 
 If a given P-LOTOS expression "t" is finite, then the non-executable branch detection 
problem (Problem 2) can be solved algorithmically. 
(proof) Since it is decidable whether a given branch in the ELTS(t) is non-executable, by 
checking whether each branch in the ELTS(t) is non-executable inductively from the root 
node, we can construct the corresponding finite RG(t) if "t" is finite.  Then, Problem 2 can be 
solved algorithmically.           
       [] 

4.3 Test suite derivation 
[Theorem 4.3] 
 For any finite P-LOTOS expression "t", we can derive a set of test cases (a test suite) which 
covers all paths in the RG(t) algorithmically.  That is, the test suite derivation problem 
(Problem 3) can be solved algorithmically. 
(proof) By Theorem 4.2, if "t" is finite, then we can construct the corresponding RG(t) 
algorithmically.  By Theorem 4.1, we can derive the set of all test cases which trace the paths 
from the root node of the RG(t) to all leaf nodes.  Therefore, Problem 3 can be solved 
algorithmically.                [] 
 Since the P-LOTOS expression "t1" in Fig. 1 is finite and the branch "m10m12" is non-
executable, the following set TS1(t1) of test cases is a test suite for "t1". 
 TS1(t1) = { f!0 ; g!0 ; h!0 ; k!0,  f!0 ; g!0 ; h!-1 ; k!-1 ; a!0 ; b!0 ,  
      f!8 ; g!8 ; h!-1 ; k!-1 ; a!0 ; c!0 ; a!1 ; b!1 }  

4.4 Discussion 
 For the purpose of test suite development, we assume that the objective is the coverage of 
all the branches in the specification. It is clear that non-executable branches cannot be tested. 
Given the detection of non-executable branches, as described in Section 4.2, we can assume 
that all branches are executable. We conclude that the problem of test case selection for a 
specification written in the form of a P-LOTOS expression is solved by the algorithm 
described above if the specification is finite. Each element (event sequence) of the resulting 
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test suite represents a test case. The execution of all these test cases leads to the coverage of all 
branches of the given specification.   

5. Test selection for infinite P-LOTOS expressions 

 It has been shown that a Basic LOTOS expression can simulate a Turing machine [FaGn 
90].  Since P-LOTOS is an extension of Basic LOTOS, it is undecidable whether a given P-
LOTOS expression "t=<P0,P1(..),..,Pk(..)>" will terminate eventually, i.e., whether "t" is finite. 
If "t" is infinite, we cannot derive a test suite, in general, because there may exist infinite 
leaves.  In the next sub-section, we will give a solution for this problem.   

5.1 M-test suite for infinite systems 
 In general, if a given P-LOTOS expression "t" is an infinite system, then the number of test 
cases may be infinite.  A solution for the purpose of practical conformance testing is to reduce 
the maximum number of executed events or process invocations. In this paper, we will limit 
the number of executed events to a maximum "M".  Let ELTSM(t) denote the sub-graph of the 
ELTS(t) which is obtained from the ELTS(t) by deleting all branches whose distances from the 
root node are greater than "M".  And let RGM(t) denote the sub-graph of the ELTSM(t) which 
is obtained from the ELTSM(t) by deleting all non-executable branches and their descendants.  
If a set TSM(t) of test cases whose lengths are less than or equal to "M" satisfies the following 
condition (1), then the set TSM(t) is called a M-test suite for "t". 
 (1) For any leaf node sn in the RGM(t), TSM(t) contains a test case to trace the path from 

the root node in the RGM(t) to the leaf node sn.   
[Theorem 5.1] 
 For a given P-LOTOS expression "t" and a given positive integer M, a M-test suite for "t" 
can be derived algorithmically. 
(proof) Obvious.                [] 
[Example 5.1] 
 t3 = <R,D> 
 R:= f?x:int[-8≤x≤8] ; g!x ; h!y[-8≤y≤8] ; 
   ( ( [y≥0] -> k!x ; stop ) [] ( [y≤-1] -> k!y ; D )  )   
 D:= a?z:int[z≥0] ; ( b!z[z=0] ; stop [] ( c!z ; D ) )           [] 
 The P-LOTOS expression t3 = <R,D> in Example 5.1 is an infinite system.  By using the 
above technique, we can derive a M-test suite of "t3" for any positive integer M.  For instance, 
the following TS4(t3) and TS6(t3) are a 4-test suite and a 6-test suite of "t3", respectively. 
 TS4(t3) = { f!0 ; g!0 ; h!0 ; k!0, f!0 ; g!0 ; h!-1 ; k!-1 } 
 TS6(t3) = { f!0 ; g!0 ; h!0 ; k!0, f!0 ; g!0 ; h!-1 ; k!-1 ; a!0 ; b!0, 
          f!8 ; g!8 ; h!-1 ; k!-1 ; a!1 ; c!1 } 
 
 
  Table 2  A P-LOTOS expression  for Simplified OSI Session Protocol  
        
 
tSession =<Pinit,P713(Va,Vm,Vr,Vsc),P04A(Va,Vm,Vr,Vsc),P10A(Va,Vm,Vr,Vsc)> 
 
   Pinit :=        Init ? Va:int ? Vm:int [Va=Vm] ; P713(Va,Vm,0,0)   
   P713(Va,Vm,Vr,Vsc):= 

        (rcvDT ; P713(Va,Vm,Vr,Vsc)) 
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     [] (sndDT ; P713(Va,Vm,Vr,Vsc)) 
     [] ([Vsc=1] -> rcvMAP ? Sn:int  [Sn=Vm] ; P10A(Va,Vm+1,Vr,Vsc)) 
     [] ([Vsc=0] -> rcvMAP ? Sn:int  [Sn=Vm] ; P10A(Vm,Vm+1,Vr,Vsc)) 
     [] ([Vsc=1] -> sndMAP ; P04A(Vm,Vm+1,Vr,0)) 
     [] ([Vsc=0] -> sndMAP ; P04A(Va,Vm+1,Vr,0)) 
     [] ([Vsc=0] -> rcvMIA ? Sn:int  [(Vm>Sn)and(Sn>Va)] ; P713(Sn+1,Vm,Vr,Vsc)) 
     [] ([Vsc=1] -> rcvMIP ? Sn:int  [Sn=Vm] ; P713(Va,Vm+1,Vr,1)) 
     [] ([Vsc=0] -> rcvMIP ? Sn:int  [Sn=Vm] ; P713(Vm,Vm+1,Vr,1)) 
     [] ([Vsc=1] -> sndMIA ? Sn:int  [(Vm>Sn) and (Sn>Va)] ; P713(Sn+1,Vm,Vr,Vsc)) 
     [] ([Vsc=1] -> sndMIP ; P713(Vm,Vm+1,Vr,0)) 
     [] ([Vsc=0] -> sndMIP ; P713(Va,Vm+1,Vr,0)) 

   P04A(Va,Vm,Vr,Vsc) := 
        (rcvDT ; P04A(Va,Vm,Vr,Vsc)) 
      [] (rcvMAA ? Sn:int  [Sn=Vm-1] ; P713(Vm,Vm,Vm,Vsc)) 
     [] ([Vsc=0] -> rcvMIA ? Sn:int [not(Sn=Vm-1)and(Vm>Sn) and (Sn>Va)] ;  P04A(Sn+1,Vm,Vr,Vsc)) 

   P10A(Va,Vm,Vr,Vsc) := 
        (sndDT ; P10A(Va,Vm,Vr,Vsc)) [] (sndMAA ? Sn:int  ; P713(Vm,Vm,Vm,Vsc)) 

              

6. Example   

 In this section, we will give an example of P-LOTOS expressions. A specification of a 
simplified Session protocol is described in Table 2. The specification treats only the data 
transfer phase, not the connection establishment and release phases. It describes the four 
functional units, kernel, half-duplex and minor  and major synchronization [ISO 87]. The 
specification is described as an extended finite state machine (EFSM) model. Some 
enumeration types are treated as integer type. Three processes P713, P04A and P10A 
correspond to the states of this model.  P713 corresponds to the data transfer state.  P04A and 
P10A correspond to the "state waiting for Major-Sync-Ack SPDU" and the "state waiting for 
S-Sync-Major response", respectively  [ISO 87].   There are four integer variables "Va", "Vm", 
"Vr" and "Vsc" which correspond to the state variables of this EFSM model.  The variable 
"Va" holds the lowest serial number to which a synchronization point confirmation is 
expected.  No confirmation is expected when "Va=Vm" holds.  The variable "Vm" holds the 
next serial number to be used.  The variable "Vr" holds the lowest serial number to which 
resynchronization restart is permitted.  The value of "Vsc" is either 1 or 0.  If the value of 
"Vsc" is 1 and the value of "Va" is less than that of "Vm", then the SS-user has the right to 
issue minor synchronization point responses.  If the value of "Vsc" is 0, then the SS-user does 
not have the right to issue minor synchronization point responses. The events such as the 
transmission/reception of MIA, MIP, MAA and MAP messages correspond to the state 
transitions. 
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Fig. 3 Test System for P-LOTOS Expressions 

7. Test system for P-LOTOS expressions 

 We have implemented a test system for P-LOTOS expressions [LiYa 92].  The system has 
the following facilities : (1) to draw a reachability graph of a given P-LOTOS expression 
graphically on a display as a tree, (2) to delete all non-executable branches and their 
descendant nodes in a given reachability graph and modify the graph, and (3) to generate a set 
of test cases for a given reachability graph automatically based on the techniques described in 
Section 4 and 5.  The test system has been developed on SUN SPARC workstations.  
Hereafter, we will explain the outline of these facilities. 
 In general, the size of the ELTSs of P-LOTOS expressions may become large.  For 
displaying large trees, we have developed a graph editor VTM [MaNa 92].  VTM makes it 
easy to observe a whole tree and some specified sub-parts simultaneously.  The users can give 
the input commands for the tree by direct manipulation on the display.  VTM is a library 
program using the X Window systems which can be used from any application program.  Our 
test system uses VTM for displaying reachability graphs.  The users can enlarge and reduce the 
size of the graph arbitrarily on the display.  It takes less than 0.2 seconds for VTM to display a 
tree which has 1000 nodes (SUN SPARCstation ELC).   
 For a given P-LOTOS expression "t" and depth "M", our test system constructs the M-
reachability graph ELTSM(t) which is a sub-graph of the reachability graph ELTS(t) where all 
nodes in the ELTS(t) whose distances from the root node are greater than M are deleted.  Then, 
our system draws the graph.  For example, for P-LOTOS expression "t1" in Example 2.1, 
RG10(t1) is drawn in Fig. 3.  The corresponding ELTS(t1) is given in Fig.1.  In Fig. 3, all 
executable events for a node "N" are described as the labels of its descendant nodes and the 
conditions for executing their events are described as the labels of the branches from the node 
N.  First, our test system reads the P-LOTOS specification "t1" and depth "10" and draws 
ELTS10(t1).  By clicking the button "cut node" on the display, all non-executable branches and 
their descendant nodes in ELTS10(t1) are deleted automatically.  Then, RG10(t1) is obtained.  
This facility helps the designer to understand what kinds of event sequences are executable for 
a given P-LOTOS expression.  If the user clicks a node on the ELTSM(t) on display, the test 
system generates automatically a test case to execute the event sequence on the path from the 
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root node to the designated node.  For example, if the node "k!y" in Fig. 3 is clicked, then a 
test case "f!0; g!0; h!-1; k!-1" is generated and the values of the variables are shown on a small 
window.  If the user clicks the button "test_suite", then a M-test suite for a given M-
reachability graph is derived automatically.  The M-test suite can also be derived without 
displaying the M-reachability graph when the depth M is large.  In order to generate a test 
case, some integer linear programming problems must be solved.  It takes about 10 and 20 
seconds for our tester to solve the integer linear programming problems whose constraints' 
numbers are 10 and 30, respectively.  For example, for the P-LOTOS expression of the OSI 
Session protocol in Section 6, it takes about 12 minutes to draw the 3-reachability graph which 
has 106 leaf nodes, delete all non-executable branches and their descendant nodes and generate 
the 3-test suite (28 test cases) using a SUN SPARCstation ELC (12MB Memory).  It takes 
about 75 minutes to generate the 4-test suite. 

8. Conclusion 

 In this paper, we consider specifications written in a restricted form of LOTOS, called P-
LOTOS where variables are of type boolean or integer, and where the integer operations are 
restricted to addition, subtraction and comparison. We show that in this context, the selection 
of a test suite can be solved by using a decision procedure for integer linear programming. For 
a given branch in a specification written in P-LOTOS, the algorithm described in this paper 
determines a sequence of input values which lead to the execution of the branch, if the branch 
is executable. A tool for the test selection based on our techniques has been implemented.  By 
using a similar technique, the question of equivalence between two specifications is solved 
algorithmically [HiNi 89].  Although it seems that in many areas, most aspects to be specified 
can be described in this restricted framework, including for instance, sequence numbering in 
communications protocols, it would be desirable to extend the power of the specification 
language for which the here described method for test suite development could be applied.  

Acknowledgements 

  This work was partly supported by the IDACOM-NSERC-CWARC Industrial Research 
Chair on Communication Protocols at Université de Montréal and The Telecommunication 
Advancement Foundation, Japan.  

 

References 
 

[Boch 90]  G. v. Bochmann : "Protocol specification for OSI", Computer Networks and ISDN Systems 18, 
pp.167-184, April 1990. 

[Brin 88] E. Brinksma : "A Theory for the Derivation of Tests", Proc. 8th Int. Conf. Protocol Specification, 
Testing and Verification, pp.63-74, North-Holland, June 1988. 

[Brin 89]  E. Brinksma, R. Alderden, R. Langerak, J. v. d. Lagemaat and J. Tretmans : "Formal approach to 
conformance testing", Proc. Int. workshop on Protocol Test Systems, pp.311-325, Oct. 1989. 

[CCITT 88] CCITT : "SDL : Specification and Description Language", Recommendation Z.100, Nov. 1988. 
[FaGn 90] A. Fantechi, S. Gnesi and G. Mazzarini : "How Expressive are LOTOS Behaviour Expressions ?", 

Proc. 3rd Int. FORTE Conf., pp.17-32, North-Holland, Nov. 1990. 
[Fuji 91]  S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou and A. Ghedamsi : "Test Selection Based on 

Finite State Models", IEEE Trans. Soft. Eng., Vol. 17, No. 6, pp.591-603, June 1991. 



   

- 14 - 

[HiNi 89] T. Higashino, K. Ninomiya, T. Kimoto, K. Taniguchi and M. Mori : "Automated Verification of 
Equivalence of Protocol Machines", Proc. 9th Int. Conf. Protocol Specification, Testing and 
Verification, pp.235-246, North-Holland, June 1989. 

[HoUl 79] J.E. Hopcroft and J.D. Ullman : "Introduction to Automata Theory, Languages, and Computation", 
Addison-Weslay, 1979. 

[ISO 87] ISO : "Information Processing System - Open Systems Interconnection - Basic Connection Oriented 
Session Protocol Specification", IS 8327, Aug. 1987. 

[ISO 89a] ISO : "Information Processing System, Open Systems Interconnection, LOTOS - A Formal 
Description Technique Based on the Temporal Ordering of Observational Behaviour", IS 8807, Jan. 
1989. 

[ISO 89b] ISO : "Estelle : A Formal Description Technique Based on an Extended State Transition Model", 
ISO 9074, July 1989. 

[Lang 89] R. Langerak : "A Testing Theory for LOTOS using Deadlock Detection", Proc. 9th Int. Conf. 
Protocol Specification, Testing and Verification, pp.87-98, North-Holland, June 1989. 

[LiYa 92] X. Li, K. Yasumoto, T. Higashino and K. Taniguchi : "A Test System for a Restricted Class of 
LOTOS Specifications", Technical Report #91-DSP-54-4, Information Processing Society of Japan, 
pp.25-32, March 1992 (in Japanese). 

[MaNa 92] T. Matsuura, T. Nakamura, T. Higashino, K. Taniguchi and S. Masuda : "VTM: A Graph Editor for 
Large Trees", Proc. of the 12th IFIP World Computer Congress'92, Madrid, Sept. 1992 (to appear). 

[Pres 29] M. Presburger : "Uber die Vollstandigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in 
welchen die Addition als einzige Operation hervortritt", in Comptes-Rendus du ler Congres des 
Mathematiciens des Pays Slavs, 1929. 

[Sari 87]  B. Sarikaya, G. v. Bochmann and E. Cerny : "A Test Design Methodology for Protocol Testing", 
IEEE Trans. on Soft. Eng., pp. 518-531, May 1987. 

[TrSa 89] P. Tripathy and B. Sarikaya : "Test Generation from Protocol Specification", Proc. 2nd Int. FORTE 
Conf., pp.329-343, North-Holland, Nov. 1989. 

[Tret 89] J. Tretmans : "Test Case Derivation from LOTOS Specifications", Proc. 2nd Int. FORTE Conf., 
pp.345-359, North-Holland, Nov. 1989. 

[Weze 89]  C. D. Wezeman : "The CO-OP Method for Compositional Derivation of Conformance Testers", 
Proc. 9th Int. Conf. Protocol Specification, Testing and Verification, pp.145-158, North-Holland, 
June 1989. 


